Klubai ir forumai Klubai ir forumai Klubai ir forumai Klubai ir forumai Klubai ir forumai
Prisijunk: Pamiršau slaptažodį  Užsiregistruoti
Rėmėjai:

marilyn vos savant monty hall parodija;}


Tikrinti, ar yra naujų atsakymų temoje

Atsakyti Kitos temos Nauja tema Temą 2013 05 19 d. 15:53 pradėjo  PSYCHOANALITIKA, peržiūrėta 934 k.
Puslapiai: 1 
PSYCHOANALITIKA
Atkaklus dalyvis

Klube: ne narys

Parašė žinučių: 194

2013-05-19 15:53 1 žinutė iš 1 Atsakyti forume: visiem Atsakyti privačiai: PSYCHOANALITIKA Įtraukti PSYCHOANALITIKA Į adresų knygelę
Monty Hall problem;]
nesunku ishanalizuoti visa jos matrica;}
The Monty Hall problem is a probability puzzle loosely based on the American television game show Let's Make a Deal and named after the show's original host, Monty Hall. It was originally posed in a letter by Steve Selvin to the American Statistician in 1975 (Selvin 1975a), (Selvin 1975b). It became famous in the following form, as a question from a reader's letter quoted in Marilyn vos Savant's "Ask Marilyn" column in Parade magazine in 1990 (vos Savant 1990a):
Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

Vos Savant's response was that the contestant should switch to the other door. (vos Savant 1990a)

The argument depends on the assumptions, made explicit in more extended solution descriptions given by Selvin (1975a) and by vos Savant (1991a), that the host always opens a different door to the door chosen by the player and always reveals a goat by this action - something he can always do because he knows where the car is hidden. Leonard Mlodinow says: The Monty Hall problem is hard to grasp, because unless you think about it carefully, the role of the host goes unappreciated. (Mlodinow 2008)

Contestants who switch have a 2/3 chance of winning the car, while contestants who stick have only a 1/3 chance. One way to see this is to notice that there is a 2/3 chance that the initial choice of the player is a door hiding a goat. When that is the case, the host is forced to open the other goat door, and the remaining closed door hides the car. "Switching" only fails to give the car when the player had initially picked the door hiding the car, which only happens one third of the time.

Many readers of vos Savant's column refused to believe that switching is beneficial, despite her explanation of her answer. After the problem appeared in Parade, approximately 10,000 readers, including nearly 1,000 with PhDs, wrote to the magazine claiming that vos Savant was wrong (Tierney 1991). Even when given explanations, simulations, and formal mathematical proofs, many people still do not accept that switching is the best strategy. (vos Savant 1991a) Paul Erdős, one of the most prolific mathematicians in history, remained unconvinced until he was shown a computer simulation confirming the predicted result (Vazsonyi 1999).

The Monty Hall problem has attracted academic interest because the result is surprising and the problem is simple to formulate. Furthermore, variations of the Monty Hall problem can easily be made by changing the implied assumptions, and the variations can have drastically different consequences. For example, if Monty only offers the contestant a chance to switch when the contestant has initially chosen the car, then the contestant should never switch. If Monty opens another door at random and only happens to reveal a goat, then it makes no difference.

The problem is a paradox of the veridical type, because the correct result (you should switch doors) is at first sight ludicrous, but is nevertheless demonstrably true. It is mathematically closely related to the earlier Three Prisoners problem, and both problems bear some similarity to the much older Bertrand's box paradox.

jeigu triju kaliniu problema, nesudetinga;}
tai tikraj yra sudetingesne jos atmaina;}
vagono dilema;]
zhinoma, kad yra monty hall problemos frakcija, kada pashalini visa smegenu failu aprobuojama medzhiaga, ir tikesi, kad pirmas numeris bus suvoktas protu;}
analize ir prileidzhianti technika. sukuria verte?
ne..
visa shios problemos sprendimo variacija, yra tokia
a b n i u i u i i u j 999 883838 -1 -3 05 06 54993;]?
ne.. a b n i u i u ii yy? ne..
eteris skyla?;] aisku, kad ne;}
a b c d e r i s s i s=99?;]
100%=tykoooovweertimaslsal;]
ir visa matricos testinumo klaida;}
kam reikia, tas paspreskit protu;}
ar intelektas gali atsinaujinti?
zhinoma, kad ne;}
yra irodyta monty hall paradoksu ir sintetinamo veiklos praktikos kodo ;} matricos..
verte;]
ivejimas a, ishejimas b;]
kodel zebras dryzhuotas?Cha cha


Puslapiai: 1 
Tikrinti, ar yra naujų atsakymų temoje
Atsakyti Kitos temos Nauja tema



Pranešti apie naujas žinutes šioje temoje
Mano prenumeratos

Statistika

Mokslas: 4.122 Žinučių forume 258.152 350 Narių klube 1.352 Banga.lt laikrodis 07:29 Dažnai užduodami klausimai ir atsakymai



Mokslas

Moderuoja: BangaLT, serke, angle_ligone
Statusas: ne narys (Įstoti)
Forumas
Naujienos
Nariai
Foto
Nuorodos

Banga.lt klubai


Mano įrankiai

Privačios žinutės
Mano temos
Dienoraštis
Draugų adresai
Mano duomenys

Mano meniu

Į mano meniu įkelti puslapį: marilyn vos savant monty hall parodija;}

Prisijungę draugai

Visi draugai

Paieška

 

Dažnai užduodami klausimai